📝 Abstract
Accurate measurement and interpretation of serum levels of troponin (Tn) is a central part of the clinical workup of a patient presenting with chest pain suspicious for acute coronary syndrome (ACS). Knowledge of the molecular characteristics of the troponin complex and test characteristics of troponin measurement assays allows for a deeper understanding of causes of false positive and false negative test results in myocardial injury. In this review, we discuss the molecular structure and functions of the constituent proteins of the troponin complex (TnT, TnC, and TnI); review the different isoforms of Tn and where they are from; survey the evolution of clinical Tn assays, ranging from first-generation to high-sensitivity (hs); provide a primer on statistical interpretation of assay results based on different clinical settings; and discuss potential causes of false results. We also summarize the advances in technologies that may lead to the development of future Tn assays, including the development of point of care assays and wearable Tn sensors for real-time continuous measurement.